IOWA STATE UNIVERSITY

FAA Center for Aviation Systems Reliability

CASR FPI – Engineering Studies: Developer Studies

Lisa Brasche Center for Nondestructive Evaluation Iowa State University Ibrasche@iastate.edu (515) 294-5227

http://www.cnde.iastate.edu/faa-casr/fpi/index.html

- Do penetrants self-develop?
- How does dry powder developer compare to non aqueous wet developer?
- How do different penetrant/developer families compare?
- How do developer application methods compare (dust chambers, bulb, spray wand, electrostatic)?
- How do different developer forms compare?

Need for Developer

- Brightness of three penetrants was evaluated without developer for cracks ranging from 13 to 130 mils
- While some larger cracks (> 80 mils) had acceptable brightness (>5), this was not true for all large cracks or for small cracks (< 80 mils)

- No difference found in ability of penetrants to "self develop" for small cracks (< 80 mils)
- Effective inspection sensitivity requires developer

- Do penetrants self-develop?
- Without developer, the three penetrants tested did not provide sufficient brightness to suggest reliable inspection
- Developer is required

- Do penetrants self-develop?
- How do developer application methods compare (dust chambers, bulb, spray wand, electrostatic)?
- How does dry powder developer compare to non aqueous wet developer?
- How do different penetrant/developer families compare?
- How do different developer forms compare?

CASR Dry Powder vs. NAWD Comparison

- Level 4 Penetrant 20 minute dwell, 30 sec spray wash, 120 sec emulsification with agitation, 60 sec spray wash
- Dry powder developer (form a) with dip/drag application Two penetrant products
 - DP1 used as baseline
 - DP2
- NAWD (form d) alcohol based
 - 2 applications
- NAWD (form d) acetone based
 - 3 applications

CASR Dry Powder vs. NAWD Comparison

- Followed manufacturer recommendation
- 10" distance
- 2 (across and back) or 3 (repeat across)

Form A vs. Form D Comparison

CASR Dry Powder vs. NAWD Comparison

- Data shown for AI, Ti and Ni samples with some differences in surface condition associated with alloy
- DP2 yielded brighter indications than DP1
- Propanol-based NAWD yielded brightest indications which is a result of "blooming" of the indication
- Acetone-based NAWD yielded lowest brightness but also "crisper" images than propanol-based NAWD

Aluminum Samples

Titanium Samples

Nickel Samples

CASR Dry Powder vs. NAWD Comparison

- Ni and Ti, in general, behaved similarly
- Recommend that differences in indication characteristics be included in training documents
 - "Blooming" that occurs with NAWD when compared to Form A developers

- Do penetrants self-develop?
- How do developer application methods compare (dust chambers, bulb, spray wand, electrostatic)?
- How does dry powder developer compare to non aqueous wet developer?
- How do different penetrant/developer families compare?
- How do different developer forms compare?

Comparative Study of Penetrant/Developer Combinations

Background

• A key step in the penetrant process is the application of penetrant with many commercial products to choose from. It is often suggested that penetrant families be used together. As a minimum, the penetrant/emulsifier are qualified as a system and shall be used together. However, developers can be selected separately. Data regarding the variation of penetrant brightness in combination with developer has not been published.

Purpose

- Compare three penetrants and three developers using two application methods (dip/drag and bulb) in a laboratory environment.
- Brightness and UVA indications were measured for each penetrant with it's recommended developer and with the developer from the other penetrants.
- Emulsifier was specific to the penetrant.
- Baseline measurements will be interspersed in the study to track the performance of the samples and ensure sample degradation is not occurring.

CASR Comparative Study of Penetrant/Developer Combinations

- Testplan and crack size distribution was determined using samples from three alloys
- Number of samples:
 - Ni 17
 - Ti 15
 - AI 8

Run #	Penetrant	Developer	Application method	Notes
1	P-1	D-1	dip/drag	
2	P-1	D-1	bulb	
3	P-1	D-1	bulb	
4	P-1	D-1	dip/drag	
5	P-1	D-1	bulb	
6	P-1	D -1	dip/drag	
7	P-2	D-2	dip/drag	penetrant with it's own developer
8	P-3	D-3	bulb	
9	P-3	D-3	dip/drag	
10	P-2	D-2	bulb	
11	P-1	D-1	bulb	
12	P-1	D-1	dip/drag	
13	P-2	D-1	dip/drag	penetrant with baseline developer
14	P-3	D-1	dip/drag	
15	P-3	D-1	bulb	
16	P-2	D-1	bulb	
17	P-1	D-1	bulb	
18	P-1	D-1	dip/drag	
19	P-1	D-2	bulb	baseline penetrant with other developers
20	P-1	D-3	dip/drag	
21	P-1	D-2	dip/drag	
22	P-1	D-3	bulb	
23	P-1	D-1	dip/drag	
24	P-1	D-1	bulb	
25	P-2	D-3	dip/drag	other penetrants with other developers
26	P-3	D-2	bulb]
27	P-2	D-3	bulb]
28	P-3	D-2	dip/drag]
29	P-1	D-1	bulb	
30	P-1	D-1	dip/drag	
31	P-1	D-1	bulb	
32	P-1	D-1	dip/drag	

CASR Comparative Study of Penetrant/Developer Combinations

- Over 1400 data points
- Red baseline dip/drag
- Blue baseline bulb
- Green other penetrant/developer combinations

Considerable variation found as evidenced by raw data and regression analysis

Comparative Study of Penetrant/Developer Combinations

 Baseline comparison shows more variation with Al samples than Ti and Ni

CASR

 Al more susceptible to environmental changes, i.e., samples are more difficult to maintain

CASR Comparative Study of Penetrant/Developer Combinations

 Use of bulb is on average, 20% less bright than dip/drag application of developer for baseline P/D combination

CASR Comparative Study of Penetrant/Developer Combinations

Comparative Study of CASR **Penetrant/Developer Combinations**

R2

02 – 412 Titanium – PxDx

P2D2 - Bulb

02-807 - Aluminum – PxDx

R Comparative Study of Penetrant/Developer Combinations

 Data sorted between dip/drag and bulb and then arranged in order of decreasing average brightness with P1Dx shown in white, P2Dx shown in blue, and P3Dx shown in green

- Differences in penetrant/developer families are observed but all cracks gave acceptable performance
- In general, dip/drag gave better brightness values than bulb
- Linear regression analysis showed better performance for P3D3 followed by P1D1 and P2D2

- Do penetrants self-develop?
- How does dry powder developer compare to non aqueous wet developer?
- How do different penetrant/developer families compare?
- How do developer application methods compare (dust chambers, bulb, spray wand, electrostatic)?
- How do different developer forms compare?

- 15 20 samples per basket
- 20 minute penetrant dwell
- 90 second pre-wash
- 120 seconds emulsifier contact with vertical motion
- Two 30 second cycles of air agitated water rinse, then a 90 second post-wash

http://www.cnde.iastate.edu/faa-casr/fpi/index.html

 Samples dried for 10 minutes at 160°F

- Drag-through application of developer
- 10 minute development time
- Brightness reading using Spotmeter
- Length reading using UVA and image analysis software

Developer Chamber Characterization

- Utilized standard sample process with baseline established using dip/drag method of developer application
- Evaluated four developer chambers and wand application methods at two locations
- Same penetrant process (level 4 PE) and chemistry used through out

- Chamber a Developer applied through linear diffuser located at top and bottom of chamber
- Chamber b Developer applied from circular diffuser located at top and bottom of chamber
- Chamber c Developer applied from circular diffuser located at top of chamber
- Chamber d Developer applied from two nozzle diffusers located at bottom of chamber
- Manual spray Low pressure, high volume manual application
- Dip/drag Hand application of individual samples. Used for baseline measurements.

Chamber A Characterization

Chamber A Characterization

- Developer applied through linear diffusers located at top and bottom of chamber
- Developer time of 20 or 60 sec followed by 2 min dwell, 1 min evacuation and removal at 5 min
- Samples placed with cracks in up or down position

Samples prior to removal

Chamber A Characterization

• New developer added to pot prior to study

- Run 8 Samples placed in up or down position. Developer application for 20 sec.
- Run 10 Samples in up or down position. Developer application for 60 sec.
- Run 12 Samples placed in down or up (opposite of Run 8) position.
 Developer application for 20 sec.

Chamber B Characterization

 20 sec of developer application followed by 3.5 min dwell and 2 min evacuation

- Other runs included:
 - 20 sec without evac
 - 40 sec without evac
 - 120 sec with evac

Chamber C Characterization

- Circular diffuser located in top of chamber
- 120 sec of developer followed by 110 sec dwell and evacuation of 60 sec

Chamber D Characterization

- Chamber contains two jets, at approximately ¼ and ¾ of the chamber length
- Jets located below rollers
- Typical operation of 5 sec developer application followed by 10 min dwell in chamber

Chamber A Characterization

Chamber B Characterization

Chamber D Characterization

CASR Developer Chamber Characterization

- Crack location (up, down, sideways) has significant effect on brightness
- Suggest consider approaches which enhance contact of the developer with potential crack locations
 - Localized developer in areas of concern
- Characterization of chamber performance needed for routine use in line maintenance
- Utilization of fan did not significantly enhance brightness
- Use of 3" wand has 10% better brightness performance than developer chamber but only 30% of that when samples were hand processed

	BL1	BL2	BL3	DC-R4- norm	DC-R5- fan- 2cycles	R6-BL- new emlf	R7-new emulf	R8- 1min new emul	R9-1 min emul-3" wand
Samples Up				0.1565	0.1837				
Samples Down				0.1767	0.1767				
Samples Dip/Drag	0.9918	1.0511	0.9571			0.6883	0.937	0.9582	0.2709

- Statistical analysis showed:
 - Differences were found in location within the chambers
 - Right/left effects in Chamber B but not Chamber A for cracks in up position
 - Improved brightness in middle of Chamber B compared to either end for cracks in up position
 - More variation at front of Chamber D than middle and back of chamber
 - No right/left, front/back or level effects for cracks in down position
 - No level (top, middle bottom) effect found in Chamber A, B or D
 - Most significant effect was crack orientation (up, down, sideways)
- Suggest consider approaches which enhance contact of the developer with potential crack locations
 - Localized developer in areas of concern
- Characterization of chamber performance needed for routine use in line maintenance

Importance of Sample Orientation

- Completed POD study which correlates brightness to detectability
- Used two sample sets, two inspectors under multiple UV intensity level, white light level combinations
- Evaluated indication location (top or bottom) of panel
- Significant differences
 can occur

Importance of Brightness

 POD is correlated to brightness

- UVA intensity of 5000 μwatts/cm² lead to ~15 mil improvement in POD when compared to 1000 and 3000 μwatts/cm²
- Increasing whitelight contamination led to significant reductions in POD in excess of 100 mils

R3.I2.5kuva.0fc Hit-Miss POD with 95% lower confidence bound

R4.I2.DevCh.5kuva.0fc Hit-Miss POD with 95% lower confidence bound

- Low pressure, high volume spray
- 5 and 25 sec runs completed using lobster cage with cracks in D, S or U position
- 60 and 120 sec runs completed with samples all in U position

Manual Spray Application

Manual Spray Application

5

40

02-441

02-035

02-434

02-034 Μ 02-060

02-053 02-457

02-439

02-408

02-027

02-057

5

• 02-422 02-045

02-039

02-446

02-437

02-052

02-412

02-063

02-064

Increasing time of manual spray application from 5 to 25 sec showed significant improvements in brightness

Comparision of time (Run 4A[5sec] and 4B[25sec]) in Site

02-036 02-462

02-432

02-059

02-450

02-416 02-449

02-404

02-423

02-061

&

Developer application method

25

Manual Spray Application

- Increasing time improves brightness for all orientations
- Runs made at 60 sec showed further improvements in brightness compared to 25 sec
- Runs made at 120 sec showed reduction in brightness for some samples

Brightness Measurement

 Brightness measurements made with Photo Research PR-880 photometer

- UVP XX-BLB 17" fluorescent UVA source with 850µW/cm² at the part surface
- Fixtures used to maintain disk position
- Geared tripod head used to manipulate photometer position

Developer Application

Baseline Brightness Results

CASR Developer Application - Wand

 Use of wand at 3" distance from part led to lower brightness than hand processing with brightness of 30% of the average brightness found with hand-processing

New Emulsifier

- Brightness increased with new emulsifier compared to original emulsifier
- Use of wand in general led to a reduction in brightness but less variability than with hand processing

 Utilized "worst case" configuration for the sample for comparison to dip/drag

CASR

 Digital camera used to record indication response for comparison **Vertical Run Set-up**

Ref: Tom Dreher ATA NDT Forum, 2004

Characterization Methods

Ref: Tom Dreher ATA NDT Forum, 2004

KDS Panel 1st Baseline Horizontal Cabinet Run

SERVICES

Dip vs. Cabinet 1 After Vertical Run

- Developer application is critical to overall FPI performance
- Developer application by dip/drag yields brighter indication than with any of the developer chamber or wand application methods
- No indications were "lost" but detectability improves with brightness optimal process will yield bright indications
- Sample orientation matters
 - Avoid barriers that prevent direct application of the developer
 - Ensure chamber configuration or part handling fixtures (rollers, baskets, etc.) don't hamper application
 - No metal-to-metal contact
 - May require multiple trips through the chamber to ensure adequate coverage on all surfaces
- White light contamination matters

- Do penetrants self-develop?
- How does dry powder developer compare to non aqueous wet developer?
- How do different penetrant/developer families compare?
- How do developer application methods compare (dust chambers, bulb, spray wand, electrostatic)?
- How do different developer forms compare?

- Current industry standards allow the use of several developer forms, including:
 - Dry powder (Form a)
 - Water soluble (Form b)
 - Water suspendible (Form c)
 - Non-aqueous wet developer (Form d)
- Past studies have shown that application of dry powder using a dust storm cabinet produces an indication brightness that varies between cabinets, and with defect location
- Spray or dip application of water suspendible or water soluble developer has the potential of avoiding this defect location sensitivity

- To compare the brightness of form b (water soluble) and form c (water suspendible) developer processes to baseline dip/drag processing using form a (dry powder)
- To compare performance results to previous studies of dust chamber performance

- Dry powder developers are accepted into the qualified products listing (QPL-SAE-AMS-2644) through a dip/drag processing procedure at Wright Patterson AFB
- Acceptance of Forms b and c developers is based on immersion results (dipping sample into stirred bath) using the manufacturer's recommended concentration
- It is known that
 - NAWD produces very bright indications, but full coverage of large components is not realistic.
 - Powder application using a dusting bulb produces results similar to that obtained using a dust storm cabinet
 - Immersion of large specimens into a vat of Form b or c is not always feasible in industry, so spray application is typical
- *Note: This study is not intended to be an exhaustive comparison of penetrant products, nor is it a qualification process study. Rather its purpose is to provide data from representative products which are typical of aerospace use.*

This work monitored the change in FPI indication brightness while varying: Developer Type

- Dry powder
- Water soluble
- Water suspendible
- NAWD

Developer Concentration (for soluble/suspendible)

- Recommended
- Low

Developer Application Method

- Immersion
- Spray (performed at Tinker)
- Dip/drag
- Bulb

Crack Orientation (for Bulb application)

- Facing up
- Facing sideways

Low-cycle fatigue (lcf) crack samples

- (20 pcs) Inconel-718 and (20 pcs) Titanium 6-4
- Dimensions: 1 1.5" wide X 0.5" thick X 6" long
- EDM starter defect propagated under 3-point bending
- Crack lengths ranged from 0.013" to 0.145" (0.066" aver.)
- Aspect ratio (surface length : depth) \approx 2.6 : 1

Sample description

- 39 samples (Ti, Ni) selected with crack sizes shown in the distribution above
- Included 16 samples from prior emulsification studies completed at ISU

Inspection Process

CASR

- 20 minute penetrant dwell
- 90 second pre-wash
- 120 second emulsification (15-second agitation interval)
- 90 second post-wash
- \rightarrow developer apply (soluble or suspendible)
- 10 minute dry @ 155°F
- \rightarrow 10 minute development (dry powder)
- photometer brightness and UVA microscope imaging
- NAWD Application and 10 minute development
- photometer brightness and UVA microscope imaging
- 30 minute UT-agitated acetone clean
- 60 minute dry @ 155°F

Variation depending upon experimental run

When divided by developer form, experimental runs included:

Dry powder developer

Dip/drag application

Crack facing upward – Bulb application

Crack facing sideways – Bulb application

Water suspendible developer

Recommended concentration – immersion application

Low concentration – immersion application

Low concentration – spray application (Tinker)

Water soluble developer

Recommended concentration – immersion application

Low concentration – immersion application

Low concentration – spray application (Tinker)

NAWD

Applied as a follow-up to any developer combination above

- Baseline runs completed at ISU using dip/drag processing
- Shipped emulsifier, penetrant and dry powder developer to Tinker for use in baseline processing
- One baseline run at Tinker to verify good compatibility between ISU baseline and OKC results
- Three runs each with Form B and Form C processes
 - Two runs with baseline penetrant/emulsifier and form b/c developer
 - One run through inspection line using penetrant/emulsifier/developer
- More detailed runs completed at ISU

Baseline Comparison

 Reasonable agreement between baseline runs at ISU and OKC
Baseline Comparison

Linear regression results for baseline showed **OKC** results within the normal variability of baseline processing at ISU

Sample Processing

• Penetrant

- Applied with applicator over crack location
- Dwell time of 20 minutes
- Pre and Post-rinse
 - 90 sec each
- Emulsification
 - 120 sec total contact time
 - Mild agitation every 15 sec, 30 sec for transition to rinse station

Sample Processing – Developer Application

 Form A – Dip/drag processing using baseline materials

- Form B Water soluble applied with spray system
- Form C Water suspendible applied with spray system
- Form D NAWD, isopropanol-based spray can, single pass

- Brightness results plotted on log scale
- Form B and C results on average show lower
 brightness
 than Form A or Form D
- Form C slightly better than Form B

Data Summary

 Linear regression analysis shows significant reduction compared to dip/drag Form A

Data Summary

- Form D (NAWD aerosol) used after each run
- Verified penetrant entered cracks

Data Summary

 Form C slightly better than Form B

CASR

 Developer combined with same penetrant/ emulsifier slightly better than developer used with baseline p/e

CASR Post Baseline Characterization

- Repeat baseline runs at ISU using dip/drag followed by NAWD
- Repeat baseline runs at ISU using bulb application followed by NAWD

- Brightness measurements were made with a Pritchard PR-880 photometer by Photo Research
- UV-A intensity measured with Spectroline DSE-100X and broadband DIX-365 sensor
- UV-A irradiation provided by twin 40W fluorescent bulbs (3,000 $\mu\text{W}/\text{cm}^2)$
- Indication images captured using a Leica MZFLIII UV-A binocular microscope and QImaging Retiga 1300 cooled camera

Dip / Drag

Bulb

Water Soluble Dipped Once per End

Water Suspendible Dipped Once per End

Form B

Form C

Surface Appearance After Developer Application at ISU

NAWD

Applied Over Initial Developer

Water Soluble/Suspendible developers used at acceptable concentration, and at a lower concentration to determine the relative effect on indication brightness

QPL Listed and Manufacturer's Recommended	Form B	2.0 lbs/gal 1.055 sp. grav.
	Form C	0.5 lbs/gal 1.035 sp. grav.
Lower than Standard	Form B	0.25 lbs/gal 1.01 sp. grav.
	Form C	0.25 lbs/gal 1.008 sp. grav.

Post Baseline Results

 Form A dip/drag runs made through out study to monitor sample progression

 Form C on average 30% brighter than Form B

• Form C brightness similar to Form A with enhanced brightness at "smaller brightness" range

Using the recommended concentration led to significant improvements in brightness for both Form B and C

- Question ask about better performance using the lower concentration at smaller crack sizes
- Generating difference plot did not find advantage

CASR Comparison of D/D to Bulb Application

 Bulb application lower than dip/drag application

Sample 021 – 0.035"

Sample 043 – 0.073"

Sample 413 – 0.091"

- Use of Form B and Form C developers at the recommended concentration lead to a 240% increase in brightness.
- Masking of small cracks was not evident at either the recommended or low concentration for this data set.
- Form B and Form C indications were more diffuse in nature, particularly when compared to the linear indications generated by the Form A developer. It is important that inspectors be aware of these differences and the implications for detectability. Consideration should be given to the implications for training.